English | 2015 | ISBN: 978-1-78398-452-7 | 400 Pages | PDF, EPUB, AZW3 | 22 MB

Machine learning is a field of Artificial Intelligence to build systems that learn from data. Given the growing prominence of R―a cross-platform, zero-cost statistical programming environment―there has never been a better time to start applying machine learning to your data.

The book starts with introduction to Cross-Industry Standard Process for Data Mining. It takes you through Multivariate Regression in detail. Moving on, you will also address Classification and Regression trees. You will learn a couple of “Unsupervised techniques”. Finally, the book will walk you through text analysis and time series.

The book will deliver practical and real-world solutions to problems and variety of tasks such as complex recommendation systems. By the end of this book, you will gain expertise in performing R machine learning and will be able to build complex ML projects using R and its packages.

What You Will Learn

- Gain deep insights to learn the applications of machine learning tools to the industry
- Manipulate data in R efficiently to prepare it for analysis
- Master the skill of recognizing techniques for effective visualization of data
- Understand why and how to create test and training data sets for analysis
- Familiarize yourself with fundamental learning methods such as linear and logistic regression
- Comprehend advanced learning methods such as support vector machines
- Realize why and how to apply unsupervised learning methods

If you want to learn how to use R’s machine learning capabilities to solve complex business problems, then this book is for you. Some experience with R and a working knowledge of basic statistical or machine learning will prove helpful.

HomepageResolve the captcha to access the links!