Hands-On Neural Network Programming with C#: Add powerful neural network capabilities to your C# enterprise applications

Hands-On Neural Network Programming with C#: Add powerful neural network capabilities to your C# enterprise applicationsReviews
Author: Matt R. Cole
Pub Date: 2018
ISBN: 978-1789612011
Pages: 328
Language: English
Format: PDF/EPUB
Size: 71 Mb

Download

Create and unleash the power of neural networks by implementing C# and .Net code
Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence.
The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks.
This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search.
Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications.
What you will learn

  • Understand perceptrons and how to implement them in C#
  • Learn how to train and visualize a neural network using cognitive services
  • Perform image recognition for detecting and labeling objects using C# and TensorFlowSharp
  • Detect specific image characteristics such as a face using Accord.Net
  • Demonstrate particle swarm optimization using a simple XOR problem and Encog
  • Train convolutional neural networks using ConvNetSharp
  • Find optimal parameters for your neural network functions using numeric and heuristic optimization techniques.